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INTRODUCTION

Soil microorganisms participate in a myriad of naturally 
occurring processes [1-6]. Extensive use of agrochemical in soil 
led to adverse effects on different soil properties as well as on 
the microorganisms [7-13]. Considerable evidence indicates 
that changes in the composition of a microbial community can 
be used to predict and dictate alteration in soil quality [14,15].

Monocrotophos (MCP) (Dimethyl (E)-1-methyl-2 methyl 
carbamoyl vinyl phosphate) is a broad spectrum organophosphate 
(OP) insecticide widely used for agricultural and household 
purposes, which works systemically and on contact [16].

Owing to the extensive use of MCP in agriculture, there is a high 
risk of human exposure to this chemical. MCP exhibits high oral 
and moderate dermal toxicity. The toxicologically relevant mode 
of action is the inhibition of AChE. The toxicity of metabolites 
of MCP is comparable with the parent compound [17,18].

Microbial metabolism is probably the most important pesticide 
degradative process in soils [19-22].

Metabolic reactions, such as N-demethylation, O-demethylation, 
hydroxylation of N-methyl groups and cleavage of the 

phosphate-crotanamide linkage, occur during the metabolism 
of MCP by microbial cultures and in soils, with the formation of 
O-desmethyl MCP, monomethyl phosphate, dimethyl phosphate, 
N-methylacetoacetamide and N-methylbutyramide [23-29].

Extracellular protein also plays a major role in the degradation 
of pesticides [30-34].

Enzymatic mode of degradation is preferable due to their ability 
to perform same function as many harsher chemicals, but at a 
neutral pH, a moderate temperature, and their biodegradable 
nature [35-37]. Their specificity is another attractive feature for 
using them for the purpose of degradation i.e. enzymes having 
less specificity can degrade many different pesticides in the 
environment and high specificity enzymes can degrade that 
particular enzyme from the mixture [37-43].

MCP degradation is very well-studied in liquid culture medium 
by means of different bacteria [27,28,44-46], algae [47], 
fungi [48-51] and extracellular fungal enzymes [52]. However, 
the biodegradation of MCP in soil remained a mystery. Although 
Gundi and Reddy, [29] had reported the degradation of MCP 
in two naturally occurring soil samples. Jia et al., [53] had also 
reported the degradation of MCP in the fluovo aquic soil by 
using Paracoccus sp. In view of its indiscriminative, intensive 
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and continuous use in Indian agriculture, kinetics of MCP 
degradation in soils is a need of the hour. Therefore, this study 
has been designed to compare the degradation process of MCP 
by Aspergillus niger JQ660373 using two different methods viz. 
microbial and enzymatic.

MATERIALS AND METHODS

Chemicals

MCP of analytical grade (99.5% purity) was procured from 
Sigma and its stock solution of 1 mg ml−1 was prepared in 
ethanol. All the other chemicals employed in the present study 
were of analytical grade and purchased from Himedia and 
Rankem, India.

Soil samples were sterilized at 200°C for 24 h in a hot air oven 
to inhibit the growth of microorganism. Thereafter, the samples 
were cooled down to room temperature for further use.

Physico-chemical Analysis of Soil

Physico-chemical properties of soil were analyzed using 
standard methods (Jain et al., 2014). Type of particles in soil, 
organic carbon percentage, exchangeable cations and pH were 
as following-

Particle size: Clay- 8.9%, silt- 5.3%, sand- 85.8%, Texture class-
Loamy sand

Organic carbon: 0.33%, exchangeable cations: Ca-7.5 m.e/100 
g soil, Mg-2.00 m.e/100 g soil, Na-0.65 m.e/100 g soil, 
K-0.039 m.e/100 g soil, Soil reaction (pH) - 7.88.

Experimental Setup

Experiment was set in triplicates. 50 g of soil sample was weighed 
by using physical balance. Each of the samples was put in 250 ml 
erylmener flask.
•	 Microbial	method: A. niger JQ660373 was suspended in 1 ml, 

0.85% saline to make a cell suspension of 1 × 108 cells per 
ml and this suspension was inoculated in 50 g of sterilized 
soil containing 150 µg g−1 MCP Jain et al. [50].

•	 Enzymatic	method: A. niger JQ660373 at a concentration of 
1 × 108 cells per ml was suspended in modified czapekdox 
medium (CZM; Composition-sucrose, 30 g; NaNO3, 2 g; 
KCl, 0.5 g; MgSO4.7H2O, 0.5 g; glucose,10 g; FeCl3,10 mg; 
BaCl2, 0.2 g; CaCl2, 0.05 g per liter and was supplemented 
with MCP (150 µg/ml) as a sole source of phosphorus) and 
incubated for 10 days in an orbital shaking incubator at 28 ± 
2°C. After the completion of incubation time the flasks were 
withdrawn and the filrate was checked for the presence of OP 
hydrolases (OPH) enzyme by the assay procedure described 
by Jain and Garg, [52]. Extracellular enzyme was purified by 
AmSO4 precipitation, dialysis and G- 100 chromatography. 
Partially purified enzyme (G-100) was further purified by 
ion exchange chromatography. The concentration of the 

purified enzyme was optimized by estimating the enzyme 
activity at different protein concentrations i.e., 50, 100, 150, 
200, 250 and 300 µg ml−1. 1 ml (optimum concentration) 
of the purified enzyme fraction was inoculated in soil.

Samples were incubated at temperature 30°C under static 
culture conditions for 30 days. The water holding capacity 
of soil was maintained at 60%. The flasks were incubated in 
dark to rule out the possibility of photo degradation. Effective 
antibiotics, streptomycin and penicillin (30 mg/kg), were added 
in the sterile soil to avoid any bacterial contamination.

Control sample containing sterile soil + MCP (150 µg/g) was 
prepared simultaneously. At regular time interval of 5 days 
each flask was taken out and residual MCP was extracted and 
calculated.

Degradation Study

Residual MCP was extracted with equal amount of ethyl acetate 
(1 ml ethyl acetate for 1 g soil). The solvent fraction was pooled. 
The solvent was allowed to evaporate and residues were dissolved 
in 2 ml ethyl acetate. Clean up of residual MCP was done by 
using florosil column and cyclo hexane: Ethyl acetate (1:1 v/v) as 
solvent system. Again the purified fractions were collected and 
solvent was evaporated to dryness and residue was re-dissolved 
in minimum amount of ethyl acetate. Purified samples of MCP 
were	stored	at	−20°C	and	used	for	further	quantification	by	
spectrophotometer. The results were confirmed by high pressure 
thin layer chromatography (HPTLC) and Fourier transform 
infrared spectroscopy (FTIR).

Residual MCP was quantified spectrophotometrically at 
254 nm. The concentration of the remaining MCP was then 
calculated using molar absorption coefficient. From the residual 
MCP concentration % of MCP degradation was calculated 
using the formula

% of MCP Degradation

 = 

Concentration of MCP in control - Cooncentration
of MCP in control

Concentration of MCP in contrrol
×100

Degradation kinetics of MCP was studied as per the method 
used by Jain et al., [50].

Analytical Methods

HPTLC (CAMAG Linomat 5, Switzerland) was used for analysis 
of samples. The aqueous samples from MCP degradation flasks 
were extracted with ethyl acetate. The samples (20-25 ml) were 
inoculated on silica gel (60 F 254) TLC plates (E. Merck, India) 
using an applicator system. Twin trough glass chamber (20 × 
20 cm) containing dichloromethane: Methanol (9:1) as the 
mobile phase was used for development of the chromatogram. 
Spots were detected using a CAMAG TLC scanner-3 at the 
wavelength of 254 nm using a deuterium lamp.
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Infrared spectra of the parent compound (MCP) and sample 
after fungal degradation were recorded at room temperature 
(25°C) in the frequency range of 4000-400 cm−1 with a FTIR 
spectrophotometer (8400 Shimadzu, Japan, with Hyper IR-1.7 
software for Windows) with a helium neon laser lamp as a source 
of infrared radiation. Aqueous samples (20 days of incubation) 
from MCP degradation flasks were extracted with ethyl acetate 
and solvent was evaporated using a rotary vacuum evaporator 
(Rotavapor R.214, Bu chi, Switzerland). The contents were 
re-dissolved in acetone. A drop of this sample in acetone was 
placed in between two sodium chloride discs, after cleaning 
with ethyl acetate. The background spectrum for acetone was 
corrected from the sample spectrum.

Statistical Analysis

The statistical analysis was performed using Statistical Package 
for the Sciences System. The variables were subjected to 
Student’s t-test and one-way ANOVA.

RESULTS

Purification Profile of Extracellular hydrolase from 
A. niger JQ660373

A. niger was grown in CZM medium containing 0.5 g/L KH2PO4 
for the production of extracellular enzyme secreted by the 
isolates. After 10 days of incubation period the medium was 
checked for the presence of extracellular enzyme. Intracellular 
hydrolase activity was also checked. It was found that A. niger 
possessed potent extracellular hydrolase activity (10.34 ± 0.2 
U and Sp. activity 3.42 U/mg) in comparison to intracellular 
activity (2.31 ± 0.01 U and Sp. Activity 1.12 U/mg). Therefore, 
the secreted fraction was collected and was partially purified by 
ammonium sulfate precipitation and gel filtration on sephadex 
G- 100. The data for the purification of the extracellular OPH 
was summarized in Table 1.

It shows that the purified enzyme showed a purification fold of 
37.04 ± 3.07 with a percent yield of 55.37 ± 0.16. The enzyme 
activity was found to be 450.02 ± 2.64 U with the protein 
content of 5.26 ± 0.35 µg/ml. Hence, the calculated specific 
activity of purified enzyme was 85.69 ± 6.29 U/mg. Purified 

OPH composed of two different subunits. The molecular mass 
of each of the subunits as estimated by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) analysis were 
found to be approximately 33 Kda and 67 Kda [Figure 1].

OPH Concentration

As depicted in the previous section hydrolase enzyme composed 
of two different subunits of different molecular weights i.e. 33 
and 67 Kd, respectively. Therefore both these purified subunits 
fractions (individual as well as combined) were tested for their 
optimum concentration for the efficient degradation of MCP. 
The enzyme activity of all the three different protein fractions 
followed an L-shaped pattern. It is evident from Figure 2 that 
150 µg/ml is the optimum concentration among all the tested 
enzyme concentrations. Therefore, this selected concentration 
was used for further degradation study. Further it was also 

Table 1: Purification profile of extracellular fungal hydrolases from A. niger JQ660373
Total activity (U) Total protein (mg) Sp. Activity (U/mg) Purification fold Yield %

Crude
OPH 812.63±2.81 351.33±5.97 2.31±0.034 1 100

Extracted (PPT)
OPH 152.13±3.36 112.21±3.79 1.35±0.01 0.58±0.04 18.72±0.2

Supernatant
OPH 553.73±3.52 221.9±8.45 2.49±0.11 1.07±0.03 68.14±0.67

G‑100
OPH 33 320.12±4.46 5.26±0.35 60.85±3.46 26.34±2.34 39.39±1.16
OPH 67 450.02±2.64 5.26±0.35 85.69±6.29 37.04±3.07 55.37±0.16

DEAE CL6B
OPH 33 297.14±5.52 2.15±0.01 138.2±2.42 59.82±1.14 40.32±1.34
OPH 67 425.11±4.46 2.26±0.04 188.1±3.36 81.42±2.34 52.31±1.13

A. niger: Aspergillus niger, DEAE: Diethylaminoethanol, OPH: Organophosphate hydrolases

Figure 1: Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 
of the partially purified extracellular enzyme from five isolated 
strains. Lane 1, marker proteins (from top to bottom) phosphorylase 
b (Mr, 97,400), bovine serum albumin (Mr, 67,000), ovalbumin 
(Mr, 43,000), carbonic anhydrase (Mr, 30,000) and Soyabean Trypsin 
Inhibitor (Mr, 20,100), respectively; lane 2, purified enzyme G-100, 
lane 3, low molecular weight protein diethylaminoethanol (DEAE) 
CL6B, lane 4, high molecular weight protein DEAE CL6B. The gel was 
stained for protein with Coomassie brilliant blue R-250 and destained 
in methanol-acetic acid-water (7:2:1)
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observed that combined fraction of both subunits showed 
high efficiency towards MCP degradation and hence showed 
high enzyme activity. Therefore, this fraction was selected for 
the degradation of MCP.

Degradation of MCP in Soil

MCP degraded rapidly in the soil by both the applied methods 
viz. microbial as well as enzymatic as shown in Figure 3-5 for 
spectrophotometric, HPTLC and FTIR respectively.

Spectrophotometric analysis

Microbial method followed a long log phase whereas in case 
of enzymatic method a long exponential phase of 25 days was 
followed by a short log phase. Residual MCP concentration 
left after 30 days of incubation by microbial and enzymatic 
methods were found to be 19.35 ± 0.13 and 0.26 ± 0.03 µg/ml of 
respectively. The percentage of degradation in the control sample 
was found negligible (16.7%) which exclude the possibility of 
auto degradation of MCP under controlled conditions.

HPTLC

The results of the spectrophotometric determination of 
residual MCP concentration were further confirmed by HPTLC 
analysis. The results depicted in Figure 4 clearly indicated 
that increasing the incubation period decreases the peak of 
MCP. Standard peak of MCP was observed at 0.19-0.21 rf 
value. After 25 days of incubation no peak for MCP was seen 
in enzymatic sample which indicates complete degradation of 
MCP from that sample. Though, a short peak was seen in case 
of microbial method. In addition to the standard MCP peak 
some other peaks were also observed which were characteristic 
of the by-products of MCP degradation. However, these were 
no identified as much emphasis was given on parent compound 
degradation.

FTIR

FTIR spectrum of MCP degradation as shown in Figure 5 clearly 
indicates hydrolytic cleavage of MCP with the formation of 
inorganic phosphates (–PO4). Peaks at 3406 cm−1 and 3263 cm−1 
as visible in control samples were characteristic for vinyl bonds. 
These peaks were completely reduced in the spectrum after 
degradation. Whereas new peaks at 1386.03 and 1443.95 cm−1 
observed were characteristic of inorganic phosphates. Some 
other peaks at 1058.30 and 1046.66 cm−1 were also observed 
which were characteristic for aliphatic amines. Some new peaks 
at a range of 1543.33-1706.06 cm−1	characteristic	for	−NH	or	
−NO	were	also	pragmatic.	It	is	also	depicted	from	the	figure 
that the number of peaks increased with enzymatic method 
when compared to fungal as employed in the present study. 
It also signifies the efficiency of enzymatic method towards 
degradation of MCP in sandy loam soil.

Degradation Kinetics

Degradation kinetics of MCP followed straight line equation 
[Figure 6]. Hence the rate constant and half-life was calculated 
by using first order kinetics. The kinetic rate constants were 
observed to be 0.002 and 0.136 day−1 and hence the calculated 
half-life of MCP was 12.64 and 5.14 days respectively for 
microbial and enzymatic methods, respectively. The half-life of 
MCP was significantly high (infinite) in control sample.

DISCUSSION

Pesticides pose great threat on environment. The first and 
foremost target of pesticide usage is, soil microbial flora and 
fauna. Though they are targeted, but only a few studies have 
been conducted to explore the pattern of degradation of 
these hazardous chemicals from soil [29,53]. Most soils are 
contaminated by naturally occurring harmful or toxic elements, 
pesticides, to some or more extent [54]. Paddy soil exhibited more 
persistence of MCP, followed by rice, leaves and water [55,56].

Therefore, this study is a comparative effort to find the 
degradation pattern of MCP in soil by microbial and enzymatic 
methods.

Figure 2: Optimization of hydrolase activity at different protein 
concentrations viz. 50, 100, 150, 200, 250, 300 µg/ml of protein for 
different subunits of purified M1 viz. 33, 67 and both combined. Error 
bars indicates standard deviation

Figure 3: Residual monocrotophos concentrations (µg/ml) in control, 
microbial and enzymatic methods in soil at different time intervals. Error 
bars indicates standard deviation
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Molecularly identified fungal strain A. niger JQ660373 was used 
as a candidate microorganism in the present study [50]. 1 ml 
each of spore suspension as well as purified hydrolase fraction 
was inoculated in soil in dark. At regular interval of 5 days 
residual MCP was extracted and quantified. It was observed 
that MCP rapidly degraded from soil samples and the rate of 
MCP degradation was higher for enzymatic method than the 
microbial method.

First, the fungal strain was tested for its intra as well as 
extracellular enzyme content. It was found that the strain 
possessed high extracellular hydrolase activity. The high 
hydrolase activity fraction was then purified by G-100 
chromatography and SDS-PAGE analysis depicted that the 
enzyme was composed of two subunits of different molecular 
weight [52]. Both hydrolase fractions were then separated by 
ion exchange chromatography.

Both fractions, individually as well as combined were tested 
for their MCP degradation efficiency. It was observed that the 
combined fraction degrade MCP very effectively. There may be 
some synergistic association between these two fractions for the 
degradation of MCP.

To the best of our knowledge, it is the first study comparing the 
degradation rate of MCP by microbial and enzymatic methods, 

but there a number of individual studies of MCP degradation 
by microorganisms.

In our study, 87.1 and 99.85% MCP was degraded in sterile 
soil within 30 days of incubation by microbial and enzymatic 
methods respectively. Gundi and Reddy [29] reported 96-98% 
degradation of MCP in black versitol and red alfinsol soil at 10 
and 100 µg/g concentration of pesticide.

However, Jia et al., [53] had reported that the addition of 
Paracoccus sp. M-1 (106 CFU/g) to fluvo-aquic soil and 
a high-sand soil containing MCP (50 mg/kg) resulted in 
a higher degradation rate than that obtained from non-
inoculated soil.

Lee et al., [57], had demonstrated that MCP decayed 
rapidly within 3 days in non-sterilized (by mixture of 
microorganism) in hanford sandy loam soil against 30 days 
in sterilized soil. Faster disappearance of MCP from soil 
sample (by mixture of microorganism) can be attributed to 
the participation of soil microorganism in the degradation 
of MCP as demonstrated by other studies [28,44,47,58]. The 
amount of MCP dissipated from control soils in the present 
study was not considerable in this study, which excludes the 
possibility of auto degradation of MCP. Longer persistence 
of MCP in fumigated and sterile soils/aqueous systems than 

Figure 4: High pressure thin layer chromatography chromatograms of residual monocrotophos concentration in soil by (a) control, (b) microbial 
and (c) enzymatic after 25 days of incubation

c

ba
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in corresponding non-sterile and non-fumigated systems 
was also reported by other researchers [59-63]. Gundi and 
Reddy, [29] had reported that repeated applications of MCP 
to soils failed to accelerate the rate of degradation under 
in vitro conditions.

MCP readily undergo photo degradation in soils causing 
approximately 40-50% of total degradation [57,61]. Therefore, 
in the present study samples are incubated in dark, which ruled 
out the possibility of photo degradation, resulting in larger 
half-life in control.

Figure 5: Fourier transform infrared spectroscopy spectrum of monocrotophos degradation by (a) control, (b) microbial and (c) enzymatic after 
30 days of incubation

c

ba

Figure 6: Degradation kinetics of monocrotophos (MCP) by (a) control, (b) microbial (MCP1) and (c) enzymatic (M1) methods in soil at different 
incubation periods. Straight line equation shows that degradation of monocrotophos follows first order kinetics

c

ba
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Glenn and Gold [30] had also suggested that extracellular 
protein plays a major role in the biodegradation of pesticides. 
Concurrent with our study other researchers had also reported 
the routinely use of, culture filtrates of fungi as crude enzyme 
preparations for enzymatic degradation of organic compounds 
including OP compounds [31-34]. On the other hand, Tarafdar 
et al., [31] had also reported no significant correlation between 
biomass production and organic P mineralization by fungi 
isolated from desert soils.

It was found that the rate of MCP degradation was higher in 
the initial period and then there was observed a lag phase in 
which the degradation seemed to stop. This might be due to 
the utilization of MCP as a substrate by released extracellular 
enzymes, higher the substrate, more is its utilization or might 
be the accumulation of toxic metabolite of MCP inhibited the 
degradation. HPTLC results also demonstrated that degradation 
of MCP is followed by production of different metabolites 
as evident by different peaks in the chromatograms. These 
metabolites were found to be stable as the peak height does 
not decrease.

Gundi and Reddy, [29] had reported that degradation of MCP 
resulted in the formation of N-methyl acetoacetamide, which 
is quite toxic and accumulates in soil for longer period.

Lamar and Dietrich, [64] had conducted a field study to examine 
the ability of two white rot fungi, Phanerochaete chrysosporium 
and Phanerochaete sordida, to degrade pentachlorophenol 
(PCP). These were able to degrade 88-91% of the PCP in 
6.5 weeks. But, instead of complete mineralization it was 
transformed to its intermediate products which remained 
tightly bound to soil particles and hence, were not available for 
further degradation. Ricotta et al., [65] had also reported slow 
mineralization of PCP by a white rot fungus under laboratory 
conditions. This condition is quite serious because these 
intermediates may be more toxic than the original compound 
and must also be degradable using a feasible option. Oxygen 
restriction (anaerobic conditions) may also be the possible 
reason for the partial degradation of pesticides with the 
formation of toxic intermediates [66].

In concurrence to the results Kearney, [22] had stated that fungal 
bioremediation depends upon the environmental conditions as 
temperature pH, nutritional status oxygen levels and moisture 
in soil. These conditions vary and may not always be optimal 
for the growth of microorganism or for the production of 
extracellular enzyme for transformation of pollutants [67]. 
Therefore, the kinetics of pesticide degradation is commonly 
biphasic with a very rapid degradation rate in the beginning 
followed by a very slow prolonged dissipation with formation 
of quite stable residues. This might be due to strong sorption 
of pesticide to soil, which decreased its bioavailability or may 
be due to low temperature inefficient for microbial degradation 
of contaminants, particularly in Northern parts of Europe and 
North America. Leaching of pesticide to deeper layers of soil 
may also decrease its rate of degradation [66,68].

Degradation kinetics of MCP had been mostly studied in 
naturally occurring soil. In the present study it is for the first 
time that the degradation kinetics is being studied by means 
of fungal suspension or by fungal hydrolases. Moreover, it is the 
first study regarding the enzymatic degradation of MCP in soil.

Degradation of MCP followed first order kinetics [51]. The 
kinetic rate constants were observed to be 0.002 and 0.136/
day and hence the calculated half-life of MCP was 12.64 and 
5.14 days respectively for microbial and enzymatic methods 
respectively.

The degradation of MCP at both concentrations in black vertisol 
and red alfinsol soils was rapid accounting for 96-98% of the 
applied quantity and followed the first-order kinetics with rate 
constants (k) of 0.0753 and 0.0606/day and half-lives (t1/2) of 
9.2 and 11.4 days, respectively [29].

Bhalerao and Puranik, [48] had reported the half-life of MCP 
in both fluvo-aquic soil and high-sand soil, for about 10 days 
respectively, which indicated it’s less persistent nature. Similarly, 
Lee et al., [57] had recovered <6% and 21% of the applied MCP 
concentrations from the Hanford soil after 16 days of aerobic 
and anaerobic incubation with the rate constants of 0.17 and 
0.09/day, with the half-lives of 4 and 8 days, respectively.

A granular formulation (5%) of MCP, showed a half-life of 
10 days in an Indian clay soil when applied at a rate of 1.5 g 
a.i. ha−1 [69]. The same was reported by other scientists with a 
half-life of 3-4 days in horticultural and vegetable fruits [70,71].

Molecular insight of MCP degradation clearly indicated 
the cleavage of vinyl bond with the formation of new peaks 
characteristic	 of	−PO4 in the FTIR spectrum. The results 
were concurrent with the study of eminent scholars [48,51,52] 
which also correlated degradation of MCP by reduction of its 
peak when compared to that in the standard chromatogram by 
hydrolytic cleavage.

Enzymatic degradation of MCP from sandy loam soil was found 
to be very fast. Therefore, the study concludes that extracellular 
purified hydrolases proved to be the most efficient tool for the 
degradation of MCP from soil.
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