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Introduction 
Background of study 

Global warming and its subsequent climate change 
can have major adverse effects on many life forms on 
earth [1]. Increasing economic development coupled 
with accelerated urbanization has led to a rapid 
increase in anthropogenic carbon dioxide emissions. 
This has resulted in increased carbon dioxide 
concentrations in the atmosphere, which have led to 
rising global temperatures [2]. Land use changes, 
such as forest clearance for agriculture, settlement, 
and industrial expansion to the atmosphere over the 
last 150 years. 

 

 

Carbon emissions from deforestation and forest 
degradation are the second largest source of 
anthropogenic carbon emissions [3]. Historically, the 
conversion of land use from forests and grasslands to 
intensive agricultural cropping systems has also 
contributed to the increase in atmospheric CO2 [4]. 
Terrestrial habitats significantly contribute to 
climate change mitigation by sinking greenhouse 
gases [5]. Carbon (C) sequestration is considered 
one of the main cost effective tools (one of the 
natural climate solutions) to mitigate climate change 
via reducing GHG concentrations in the atmosphere 
[6]. 
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ABSTRACT 
Forests, shrubs and grasslands play an imperative role in climate change mitigation and 
balancing nature by sequestering and retaining carbon above and below the ground in 
biomass. The study was conducted to determine the total carbon stock potential of 
shrub lands in Shilabo district, Somalia, Ethiopia, as well as the implications for climate 
change mitigation. The study was restricted to the carbon stock potential of the shrub 
land depending on soil texture for three major carbon pools: Above Ground Biomass 
(AGB), Below Ground Biomass (BGB) and Soil Organic Carbon (SOC). Using generic 
allometric equations that are readily available, the biomass of each species of tree and 
shrub was determined. To gather the necessary and pertinent data for the study region 
at every 390 m between each sample plot and 700 m between each transect line, 
sample plots of 20 by 20 m were established using systematic random sampling 
techniques. Using Breast Height (BH) tape, standing trees with branches and twigs 
measuring 5 cm or less in Diameter at Breast Height (DBH) were measured on 400 m2 
of sample plots. The height of the trees was also assessed using a hypsometer. Each of 
the five 1 x 1 m shrub land subplots, one in the middle and four at the corners of the 
main plot, had litter samples carefully taken from it. Litter samples from each of the 
five subplots of the main plot were combined to create a composite sample that 
weighed about 100 grams. Each of the five 1 by 1 m subplot regions, one at each of the 
four corners and the main plot's center, had samples of soil organic carbon and bulk 
density taken at a depth of 30 cm using an auger. The Statistical Package for Social 
Science (SPSS) software version 26 was used to estimate and assess the carbon stock of 
various carbon pools. The findings demonstrated that the below ground and above-
ground biomass total mean carbon stocks at the sandy loam and sandy textured soil 
sites were approximately 507.36 t ha and 297.24 t ha, respectively. An independent 
sample t-test revealed that the mean difference in carbon pool and carbon dioxide 
sequestration between sandy loam texture soil (site 1) and sandy texture soil (site 2) 
was statistically significant. Shrub lands have provided great environmental benefits 
and services, as well as mitigating climate change impacts. Therefore, any 
environmental protection agencies, both government and non-government, have to 
look for and protect this resource.  
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Forests store approximately 30% of the global 
terrestrial Carbon (C) stock, with 60% located 
below ground [7]. These forests act mostly as a 
large net sink for atmospheric carbon, but concerns 
exist for the potential release of carbon under the 
impact of global warming over the next century 
[8,9]. Forest ecosystems are the main source of 
livelihood for many people and play a crucial role in 
the economic development of many countries 
[10,11]. They are essential natural resources that 
furnish a wide range of ecosystem services, such as 
moderating atmospheric carbon balance and, thus, 
climate change [12]. 

In sub-Saharan African countries, the rapid 
conversion from forest and woodland to 
agricultural land was driven by both proximate and 
underlying forces. The interaction of anthropogenic 
and biophysical drivers initiates change processes 
[13,14]. Expansion of agricultural land at the 
expense of forest land, grassland and shrub land 
and prolonged use for agriculture without 
conserving natural resources were the most 
detrimental factors for land use and land cover 
change [15]. 

In Ethiopia, population growth and investment are 
followed by deforestation and land use changes 
have resulted in a dramatic decrease in forest land 
over the last few decades [16]. Burning of forests 
and heavy disturbances in the remaining natural 
forests, such as cattle grazing or logging, that result 
in severe soil degradation [17]. Overgrazing is one 
of the major factors aggravating ecosystem 
degradation, which causes an increase in 
unpalatable species by destroying the most 
palatable species and reducing plant cover and 
biomass, thereby increasing erosion hazards and 
reducing the overall productivity of the land [18]. 

Ethiopia's total GHG emissions have reached 141 
million metric tons of carbon dioxide equivalent 
(Mt CO2 eq), according to (world resources institute 
climate analysis indicators tool [19]. 

Even Addis Abeba's greenhouse gas inventory has 
reached 4.89 mt CO2 eq. Since 2012, Ethiopia's 
government has been working on the Climate 
Resilient Green Economy (CRGE), which aims to 
stabilize greenhouse gas levels and achieve carbon 
neutrality by 2025 by implementing reduction 
measures in a variety of national industries, 
including forestry, agriculture and manufacturing 
Karki, et al. ministry of environment, forest and 
climate change [20,21]. 

Somali region, Eastern part of Ethiopia, forest and 
shrub land resources account for a small 
proportion of the total land area. It suffered badly 

from recurrent droughts and serious tree cutting 
practices recently [22]. Irrespective of charcoal 
exports, it can hardly meet the local demands for 
wood, fuel, charcoal, building materials, feed, 
furniture, etc. The absence of law and order for 
nearly two decades has worsened the situation. 
Since then, no forest inventory has been produced 
to allow for close monitoring of those resources.  

A few studies related to the carbon stock potential 
of forests, grasslands, and shrub lands were 
conducted in different parts of Ethiopia; such as 
Atsbha, et al. on the carbon sequestration potential 
of natural vegetation under grazing influence in 
southern Tigray, Ethiopia; Abebe, et al. on the 
biomass, carbon stock and sequestration potential 
of oxytenanthera abyssinica forests in the lower 
beles river basin, Northwestern Ethiopia; Belay, et 
al. on the carbon sequestration potential of 
degraded agricultural land in the Amhara region of 
Ethiopia [23,24]. However, their study only focused 
on highland regions affected by frost and ignored 
the potential carbon stock of shrub carbon pools on 
dry land. The majority of researchers didn't 
discover offsets in shrub land carbon stock 
potential dependent on soil texture. The carbon 
stock potential of the Shilabo shrub lands was also 
not researched by any of the aforementioned 
experts, so there is a lack of quantitative scientific 
data on it. In order to absorb a significant amount of 
atmospheric CO2 and achieve the goals of REDD+, it 
is crucial to integrate the current management 
techniques of Shilabo shrub land with climate 
change mitigation through carbon sequestration. 
So, there is a need to study the carbon stock 
potential of Shilabo shrub land to examine its 
relevance to climate change. 

Materials and Methods 
Description of the study area 

Geographical location: The study area is located 
in Shilabo district, Korahe zone, Somali National 
Regional State, Ethiopia, bordered on the south-
east by Shebelle zone, on the west by Debeweyin, 
on the northwest by Kebridehar, on the northeast 
by the Warder zone, and on the southeast by 
Somalia. It is approximately 1,130 kilometers 
southeast of Ethiopia's capital city, Addis Ababa, 
and approximately 530 kilometers from the town 
of Jigjiga. It has an average elevation of 395 m 
above mean sea level and is located between 
latitudes 5° 25' and 6° 55' N and 43° 30' and 46° 
30' E (Figure 1). According to the data obtained 
from Sheng, et al., the range of mean maximum 
temperature and mean minimum temperature is 
30 °C to 35 °C and 19 °C to 23 °C, respectively and 
the range of precipitation is 0 mm to 150 mm [25]. 
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Figure 1. Study area map 

The soil texture of the study area ranges from 
sandy to sandy loam, and the soil type of the study 
area is vertisol, according to (Shlabio Woreda 
Agricultural Office (ShWAO). Shilabo shrub land 
and grass land are part of the dry Afro-Montane 
natural resources in Ethiopia, which are only 
natural forests and shrubs. Most of the Shilabo 
Worda coverage is dominated by shrub land. To 
some extent, shrubs also comprise different 
understory vegetation, shrubs and trees from the 
lower to higher strata in this study area [26]. 
Data type and sources: Combinations of primary 
and secondary data were used to achieve the 
objectives of this study. The primary data was 
collected through field measurements from three 
carbon storage pools, such as above ground 
biomass, below-ground biomass, and soil organic 
carbon, whereas the secondary data was collected 
from different journals, books, and an unpublished 
document of the Korahe zone agricultural office. 
Procedure of data collection: The spatial 
boundaries of the study area were clearly defined 
to facilitate the accurate measuring, monitoring, 
and accounting of the field data as recommended 
by Brown, et al. [27]. The boundaries of the study 
area were delineated by taking geographic 
coordinates through the Geographical Positioning 
System (GPS) at each turning point of the study 
area. 
Stratification of the study area: A relatively 
homogeneous unit of elevation, a stable rainfall 
regime, a high level of disturbance and a steep 

slope are all potential criteria for stratification in 
Ethiopian forests [28]. Accordingly, Shilabo shrub 
land independently did not get divided into strata 
based on the relative homogenous unit of 
topography because each land use of the area 
almost has the same elevation, and the efficiency 
and accuracy of the shrub land carbon counting 
are not influenced by topography. Rather, the area 
was classified based on soil texture in order to 
conduct this study because there was a definite 
difference in soil texture between the two study 
sites in Shilabo district. 
Sample size determination: Small sample plots 
are efficient for relatively homogenous tree sizes, 
but if the trees are widely different sizes, local 
variability becomes high, and therefore larger 
sample plots are more efficient. The typical sizes 
of sample plots used in the forest carbon 
inventory are 200 m2, 400 m2, and 500 m2, as 
indicated by Blaxekjaer [29]. As a result, 
approximately 400 m2 of a square sample plot 
were used to sample the study shrub land, which 
has a higher likelihood of incorporating more 
within plot heterogeneity and thus being more 
representative than other shapes of sample plots 
in the same area, as indicated by Hairiah, et al. 
[30]. 
Sample plots of 20 m by 20 m were laid using 
systematic random sampling techniques at every 
390 m difference between each sample plot and 
every 700 m difference between each transect line 
to collect the required and relevant data for the 
study of shrub land. Finally, using GPS 
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instruments and four (4) transect lines, 30 sample 
plots for sandy loam soil texture and 30 for sandy 
soil texture on shrub land were laid out. The 
distance between transect lines and sample plots 
is determined by the principles of Lampadariou, et 
al., which allow for a maximum difference of one 
km (1 km) between each sample plot and each 
transect line for relatively homogeneous sized 
shrub land [31]. 
Field measurements 
Sampling and identification of trees and 
shrubs (≥ 5 cm DBH): All shrubs and trees with a 
Diameter at Breast Height (DBH) of greater than 5 
cm were measured in each plot of a 400 meter 
square area. Trees measuring greater than 2.5 cm 
in Diameter at Breast Height (DBH), 
approximately 1.30 cm above the ground, and 
shrubs measuring greater than 2.5 cm in Diameter 
at Stump Height (DSH), about 30 cm from the 
ground, were measured from each quadrant of the 
corresponding size. In cases where the stem of a 
tree was branched at breast height or below, the 
diameter of separate branches was measured to 
be considered as an individual tree [32]. Similarly, 
this was applied to multistemmed shrubs. 
According to Pearson, et al., the height of trees and 
shrubs was measured with a hypsometer. 
Litter sampling: Litter samples (leaves, twinges, 
fruits or flowers, and bark) were collected from 
both sites of shrub land's 1 meter square subplot 
within the main sample plot. This was done at 
each sample plot's four corners and one in the 
center. A composite sample of 100 g from 60 
leveled and evenly mixed subsamples was 
transported to the laboratory of the Haremia 
agricultural research center for analysis. The 
samples were placed in a plastic bag and oven 
dried at 105°C for 24 hours and weighed for 
analysis of total carbon concentrations to 
determine the oven dry mass, from which the total 
dry mass and carbon fraction were calculated [33]. 
Sampling of soil organic carbon, texture and 
bulk density: The soil samples were collected by 
using the auger at a depth of 30 cm from each of 
the 1 meter square areas of subplots, which were 
located at the four corners and one in the center of 
the main plot. Five samples taken from one main 
plot were mixed to yield a 100 gram composted 
soil sample. To separate root and gravel, a 100 
gram air dried composted soil sample was blown 
through a 2 mm sieve. Then it was placed in a 
plastic bag and labeled with the sample plot to 
which it belongs. The Bulk Densities (BD) and 
texture of the soil sample were collected using a 
core sampler at a depth of 30 cm from each of the 

subplots of the main plot in the same way that a 
soil sample was taken with an auger. A total of 150 
soil samples were taken at bulk density (5 x 30) 
from each site of sandy loam and sandy texture 
soil. The haremia agricultural research center 
laboratory received both composite and BD soil 
samples collected with augur and core sampler, 
and the moist field soil samples were dried in an 
oven at 105°C for 12 hours to determine the oven 
dry weight and the percentage of organic carbon 
was determined in the laboratory using the black 
method. Soil texture was identified through 
laboratory measurements in terms of percentage 
based on the soil class triangle, which were taken 
from both study sites. 
Estimation of above ground tree biomass and 
carbon stock: The above ground biomass of trees 
and shrubs existing in the study area was 
calculated using the general allometric model of 
Chave, et al. as follows [34]. 
AGB=0.0673 × (𝜌𝜌DBHH2) 0.976    (Equation 1) 
AGB: Aboveground Biomass (kg; DBH: Diameter of 
trees at Breast Height (cm); H: Height of the tree 
(m) and 𝜌𝜌: Wood density: (0.6 t/m3); which is the
average value of wood density of trees in Africa
[35].
The above ground carbon and CO2 equivalents 
sequestered in the above ground biomass of trees 
and shrubs found in the study area were 
calculated by the principles of Lampadariou, et al. 
and Pearson, et al., respectively, as follows [36]. 
Above Ground Carbon (AGC)=above ground 
biomass × 0.5               (Equation 2) 
The CO2 equivalent sequestered in the 
aboveground biomass=AGC × 3.67      (Equation 3) 
Estimation of below ground tree biomass and 
carbon stocks: The root shoot ratio factor of 
MacDonald was used to estimate the below 
ground biomass of trees and shrubs found in the 
study area. According to MacDicken and Pearson 
et al., standard methods of estimating BGB and 
BGC can be obtained as 20% and 10% of above 
ground tree biomass, respectively [37]. 
BGB=AGB × 0.2    (Equation 4) 
BGC=BGB x 0.5   (Equation 5)  
BGB: Below Ground Biomass; BGC: Carbon 
Content of Below Ground biomass; 0.2 is the 
conversion factor (or root to shoot ratio), which is 
20% of the above ground biomass. 
The amount of CO2 equivalent sequestered in the 
below ground biomass of the study area was 
calculated by multiplying BGC by the molecular 
mass ratio of carbon dioxide to carbon (44/12), 
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which are 3.67 as indicated by Pearson, et al. 
Estimation of litter biomass and carbon stock: 
The litter biomass found in the study area was 
calculated using the formula of Pearson, et al. as 
follows: 
Total litter biomass ((t/ha))=(Total fresh weight 
(g) x subsample dry weight (g) x sample area
(m2)/subsample fresh weight (g)) *1/10,000
(Equation 6)
CL=LBM × %C           (Equation 7)                                                
CL: Total Carbon stock in the litter biomass (t/ha) 
LBM: Oven-dry biomass of litter 
%C: Carbon fraction of litter samples determined 
in the laboratory. 
Estimation of soil organic carbon: The carbon 
stock density of soil organic carbon found in the 
study area was calculated using the volume and 
bulk density of soil as recommended by Pearson, 
et al. 
V=h×𝜋𝜋r2  (Equation 8)                          
V is the volume of the soil in the core sampler (in 
cm3), h is the height of the core sampler (in cm), 
and r is the radius of the core sampler (in cm). 
Moreover, the bulk density of the soil sample was 
calculated as follows: 
BD= (𝑊𝑊𝑊𝑊𝑊𝑊)/V    (Equation 9)                       
BD: soil Bulk Density (g/cm3), Wav: Average Dry 
Weight of soil sample per sample plot and V: 
Volume of soil sample in the core sampler (cm3). 
SOC=BD*d*%C    (Equation 10)                      
SOC: Soil Organic Carbon stock per unit area 
(t/ha), BD: Soil Bulk Density (g/cm3), d: The total 
depth at which the samples were taken (30 cm), 
and %C: Carbon fraction of soil samples, which 
was determined in the laboratory. 
Estimation of total carbon stock density: The 
total carbon stock density of the study area was 
calculated using the equation of Subedi, et al. by 
summing the carbon stock densities of the 
individual carbon pools of the study area. 
CT=AGC+BGC+LC+SOC   (Equation 11)                                      
CT: Carbon stock density for all carbon pools 
(t/ha), AGC: Carbon stock in above ground tree 

and shrub biomass (t/ha), BGC: Carbon stock in 
below ground tree and shrub biomass (t/ha), LC: 
Carbon stock in Litter biomass (t/ha), and SOC: 
Soil Organic Carbon 
Data analysis 
The collected data, like DBH of trees, height of 
trees, dry weight, and carbon fraction of litter 
samples and soil samples, were recorded on a 
Microsoft excel data sheet of 210 and those were 
analyzed using Statistical Package for Social 
Science (SPSS) software version 26. The 
relationships between different dependent 
variables (AGC, BGC, LC and SOC) and an 
independent variable (soil texture) were 
processed and tasted by descriptive statistics and 
analysis of variance (independent t-test) at a 95% 
confidence interval. Descriptive statistics were 
used to summarize the data, including the mean, 
maximum, minimum and standard deviations of 
the carbon stock of each carbon pool in the study 
area, while an independent t-test was used to 
determine the statistical significance of the 
difference in carbon stock among plant species 
and the carbon stock of each carbon pool among 
the soil texture differences between the two study 
areas in t/ha. 

Results 
Soil organic carbon and soil texture 
The main factors taken into account for the 
estimation of Soil Organic Carbon (SOC) are soil 
depth, soil bulk density, soil texture and SOC 
concentration. As the laboratory results indicated, 
in Shilabo district at site 1, the soil texture among 
30 soil samples was 69%–74% sand, 17%–19% 
clay and 9%–12% silt. This soil texture also has a 
range of 0.624%–1.385% carbon fraction (Table 
1). The soil texture laboratory results on the same 
number of samples at study site 2 were 96%–97% 
sand, 2.2%-2.5% clay and 0%-1.8% silt. The 
carbon fraction of this soil texture has a range of 
0.1%-0.254%. According to the soil class triangle, 
site 1, soil and site 2, soils were grouped into 
sandy loam and sandy soil texture, respectively. 
According to the laboratory results, the amount of 
carbon fraction in the soil increased as the 
percentage of clay soil texture increased. 

Table 1: Soil characteristics in terms of texture, carbon fraction and bulk density. 
Carbon stock factors Site 1 Site 2 

Soil texture 

Sand 69%-74% 96%-97.5% 
Clay 17%-19% 2.2%-2.5% 
Silt 9%-12% 0-1. 8%

https://www.ejmaces.com/
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Carbon fraction 0.624%-1.385% 0.1%-0.254% 
Bulk density 1.39%-1.57 g/cm3 1.66%-1.67 g/cm3 

Estimation of above ground and below ground 
carbon stocks and CO2 eq 
Sandy loam soil texture of shrub land area: The 
minimum and maximum ranges of the AGC and 
BGC stock of sandy loam texture soil in Shilabo 
district were calculated as 98.69, 658.79 and 
20.74, 121.76, with a mean value of 379.50 t/ha 
and 71.45 t/ha, respectively. The minimum and 
maximum CO2 eq above ground biomass and 
below ground biomass sequestered in trees and 
shrubs of the study area were also estimated to be 
38.00, 2118.77, and 60.79, 503.75 with a mean of 
1074.64 t/ha and 280.94 t/ha, respectively. This 
was taken from 30 samples of sandy loam-
textured soil in Shilabo district. 
Litter contributes to environmental quality by 
mitigating climate change. Based on the results, 

the minimum and maximum Carbon Litter (LC) 
sequestered in litter biomass were 0.67 and 3.60, 
respectively, with an average of 2.071 t/ha. 
Carbon dioxide equivalent (CO2 eq) was calculated 
in this biomass as 0.67, 3.60, and 7.72 t/ha and 
stored at an average of 7.72 t/ha in the Shilabo 
district sample taken from sandy loam textured 
soil, as shown in Table 2. 
Soil supports an eco-system that houses macro- 
and microorganisms. According to this, the 
researchers conducted this study to estimate the 
amount of carbon stored in the soil. The minimum 
and maximum Soil Organic Carbon (SOC) were 
calculated as 32.54 and 78.25 t/ha, respectively, 
and the mean SOC of sandy loam-textured soil was 
54.34 t/ha . 

Table 2. Carbon pools above and below the ground, as well as CO2 eq in sandy loam texture soil 
N Minimum t/ha, Maximum t/ha Mean t/ha Standrad deviation 

AGC 30 98.69 658.79 379.5 165.14 
BGC 30 20.74 121.76 71.45 36.13 
AG CO2 eq 30 38 2118.77 1074.64 476.66 
BG CO2 eq 30 60.79 503.75 280.94 156.24 
LC 30 0.67 3.6 2.07 0.91 
LCO2 eq 30 2.46 13.21 7.72 3.45 
SOC 30 32.54 78.25 54.34 14.53 
SCO2 eq 30 134.61 298.23 207.59 49.92 

Sandy textured shrub land soil: According to a 
study conducted on a sandy textured soil, shrub 
land study site, SOC and CO2 eq sequestered 
through biomass. The minimum and maximum 
AGC and BGC were calculated as 204.26, 270.78, 
and 35.54, 58.34 t/ha, respectively, corresponding 
to the means of 236.42 and 47.26 t/ha, 
respectively. The mean AGCO2 eq and BG CO2 eq 
sequestered in sandy textured soil were 995.72 
and 163.97 t/ha, respectively, and the minimum 
and maximum AGCO2 eq and BGCO2 eq values 
calculated in this area were approximately 871.14, 
1113.98, 121.25, and 201.67 t/ha. 
The minimum and maximum litter biomass stored 
amounts of LC were 0.54 and 3.44 t/ha, 
respectively, as calculated at the sandy texture soil 
shrub land study area. The mean amount of 

carbon stocked on this site was 1.89. The mean 
sequestered LCO2 eq in the litter biomass was 6.93 
t/ha, and the minimum and maximum LCO2 eq 
pools were 1.98 and 12.62 t/ha, respectively. 
The organic carbon of sandy soil texture in Shilabo 
district ranged from 2.54 to 20.67 t/ha, and the 
average SOC was calculated at 11.67 t/ha. This 
study site sequestered a minimum and maximum 
of 18.81 and 63.67 t/ha of CO2 eq, respectively, 
with a mean of 41.91 t/ha on sample plots 30 and 
31, respectively. At the second site (site 2), Shilabo 
shrub land's average sum of AGC, BGC, LC and SOC 
biomass carbon stocks was calculated, and it gave 
a value of 297.24 t/ha and a sequestered average 
sum of AGCO2 eq, BGCO2 eq, LCO2 eq and SCO2 eq of 
about 1208.53 t/ha at the sandy soil texture site 
(Table 3). 

Table 3. Above and below ground carbon pools and CO2 equivalents in sandy textured soil. 
N Minimum t/ha, Maximum t/ha Mean t/ha Std. Deviation 

AGC 30 204.26 270.78 236.42 19.02 
BGC 30 35.54 58.34 47.26 5.49 
AG CO2 eq 30 871.14 1113.98 995.72 75.28 
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BG CO2 eq 30 121.25 201.67 163.97 21.75 
LC 30 0.54 3.44 1.89 0.83 
LCO2 eq 30 1.98 12.62 6.93 3.06 
SOC 30 2.54 20.67 11.67 5.38 
SCO2 eq 30 18.81 63.67 41.91 13.71 

Independent sample t test for carbon pool and 
CO2 eq of soil texture 
A mean difference in AGC, AGCO2 eq, BGC, BGCO2

eq, SOC, SCO2 eq, LC and LCO2 eq between sandy 
soil and sandy loam textured soil was determined 
using an independent sample t-test. Overall, the 
largest difference (143.08) with 1.67 of Cohen's 
value was observed for AGC of sandy loam texture 
soil (M=379.50, SD=165.14) and AGC of sandy 
texture soil (M=236.42, SD=19.02, t (58)=4.89, 
p=000, two-tailed). There is a statistically 
significant difference in texture between sandy 
loam and sandy soil. This implies that sandy loam-
textured soil has more carbon than sandy soil. 
AGCO2 eq of sandy loam texture soil (M=1074.64, 
SD=476.66, MD=78.92) with a strong effect of 
Cohen’s value has a higher statistically significant 
difference than sandy texture soil (M=995.72, 
SD=75.28, t (58)=3.99, p=000). 
Sandal loam texture soil has a higher statistically 
significant difference than sandy texture soil 
(M=59.26, SD=5.49, t (58)=5.07, p=000).BGCO2 eq 
sandy loam texture soil recorded (M=280.94, 
SD=156.24, MD=116.97, with the greatest effect of 
Cohen’s value=1.82) has a more statistically 
significant difference than sandy texture soil 
(M=163.97, SD=21.75, t (58)=5.49, p=000). The 
mean difference between sandy loam texture soil  

carbon and CO2 eq and sandy texture soil was 
compared using an independent sample t-test. The 
mean SOC of sandy loam texture soil (54.34, 
SD=14.53, MD=42.67, with the largest Cohen’s 
effect value of 4.29), has a more statistically 
significant difference than sandy texture soil 
(M=11.67, SD=5.38, t (58)=15.1, p=0.000). The 
mean of SCO2 eq for sandy loam texture soil 
(M=207.59, SD=49.92, MD=165.68, with the 
greatest effect size of Cohen=5.21) has a 
statistically significant difference from sandy 
texture soil (M=41.91, SD=13.71, t (58)=17.53, 
p=000). 
The Litter Carbon stock (LC) of sandy loam texture 
soil (M=2.07, SD=0.912, MD=0.183 with a modest 
effect of Cohen=0.21) is higher than that of sandy 
texture soil (M=1.89, SD=0.834, t (58)=0.801). The 
mean deflection of LC in sandy loam texture soil 
has not shown a statistically significant difference 
relative to sandy texture soil (P=0.422>0.05). The 
mean of LCO2 eq (M=7.72, SD=3.45, MD=0.791 
with the modest effect of Cohen’s value=0.24) has 
not a statistically significant mean difference 
compared to sandy texture soil (M=6.93, SD= 3.06, 
t (58)=0.940, p=0.351) (Table 4). Based on these 
results, both LC and LCO2 eq have a non-
significant mean difference between sandy loam 
texture soil and sandy texture soil. 

Table 4. Results of an independent sample t-test for carbon pool and CO2 eq of soil texture 
Pools  Study sites Soil  texture N Mean SD MD t df    P Cohen’s d value 

AGC 
site 1 Sandy loam 30 379.5 165.14 

143.08 4.89 58 0 1.67 site 2 Sandy 30 236.42 19.02 

AG CO2 eq 
site 1 Sandy loam 30 1074.64 476.66 

78.92 3.99 58 0 1.36 site 2 Sandy 30 995.72 75.28 

BGC 
site 1 Sandy loam 30 71.45 36.13 

24.19 5.07 58 0 1.69 site 2 Sandy 30 47.26 5.49 

BG CO2 eq 
site 1 Sandy loam 30 280.94 156.24 

116.97 5.49 58 0 1.82 site 2 Sandy 30 163.97 21.75 

SOC 
site 1 Sandy loam 30 54.34 14.53 

42.67 15.1 58 0 4.29 site 2 Sandy 30 11.67 5.38 

SCO2 eq 
site 1 Sandy loam 30 207.59 49.92 

165.68 17.5 58 0 5.21 site 2 Sandy 30 41.91 13.71 

LC 
site 1 Sandy loam 30 2.07 0.912 

0.183 0.81 58 0.422 0.21 site 2 Sandy 30 1.89 0.834 

LCO2 eq 
site 1 Sandy loam 30 7.72 3.45 

0.791 0.94 58 .0.351 0.24 site 2 Sandy 30 6.93 3.06 
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Total carbon stock and CO2 eq, and climate 
change mitigation potential of Shillabo shrub 
land 
The total mean carbon stock potential of Shilabo 
shrub land among sandy loam soil texture was 
calculated by summing up all carbon pools of AGC, 
BGC, SOC and LC with 379.50, 71.45, 54.34 and 
2.07 t/ha, respectively, which resulted in 507.36 
t/ha. The total mean CO2 eq sequestered in this 
study site was the sum of AGCO2, BGCO2, SCO2, and 
LCO2 eq, which were 1074.64, 280.94, 7.72 and 
207.59 t/ha, respectively, which gave 1570.89 
t/ha. 
In the same way, the total mean carbon stock 
potential of Shilabo shrub land among sandy soil 
texture was calculated by summing up all carbon 
pools of AGC, BGC, SOC, and LC with 236.42, 47.26, 
11.67, and 1.89 t/ha, respectively, which gave 
297.24 t/ha. The total mean result of CO2 
equivalence sequestration was the total mean 
carbon stock pool. The sum of AGCO2 eq, BGCO2 
eq, SCO2 eq, and LCO2 eq with 995.72, 163.97, 
41.91, and 6.93 t/ha, respectively, resulted in a 
total mean of 1208.53 t/ha. 
In Shilabo district, at site 1, above ground biomass, 
below-ground biomass, litter biomass, and soil 
organic biomass each have the capacity to remove 
1074.64, 280.94, 7.72 and 207.59 t/ha CO2 eq, 
respectively, for a total global climate change 
mitigation potential of 1570.89 t/ha CO2 eq. In the 
same way, at site 2, above-ground biomass, below 
ground biomass, litter biomass, and soil organic 
biomass have the capacity to remove 995.72, 
163.97, 6.93 and 41.91 t/ha of CO2 eq, 
respectively, with a total mean of 1208.53 t/ha. 

Discussion 
Effects of soil texture vegetation cover on 
carbon stock  
The study showed how carbon stock varies among 
different soil textures, vegetation and land uses. 
Clay rich soils have a higher capacity for carbon 
sequestration. In contrast to Soil Organic Carbon 
(SOC), which is governed by abiotic factors 
including the chemical and physical processes of 
soil formation, SOC is directly tied to biological 
processes such as biomass input and litter 
buildup. The SOC pool made up 91% of the Total 
Carbon (TC) storage in these alpine steppe soils, 
according to SOC and SIC densities [38]. 
As the Shilabo district is a desert, it is covered 
with shrubs and has a rich, sandy textured soil. 
However, the actual soil and vegetation 
differences in this district were clearly confirmed 

by this study. As a result, a scientific study was 
conducted to determine the amount of carbon 
sequestration at two sites in the Shilabo district 
based on differences in soil texture and 
vegetation. 
The soil had a high proportion of clay, was able to 
store more carbon, and was suitable for vegetation 
growth. This study agrees with the study of 
Solomon, et al., who stated that clay content was 
higher in dense forest soils than in open forest 
soils [39]. In the study of Zhang, et al., who 
reported a significant variation among soil types, 
these types could be regarded in most cases as a 
surrogate for cover [40]. The amount of vegetation 
cover also played an important role in 
determining soil carbon stores. The differences 
between the types of forest cover, with broadleaf 
woods having the greatest SOC mean and conifers 
and evergreen forests having greater and lower 
SOC values, were similar to prior calculations [41]. 
In the study area, soil physicochemical properties 
and organic carbon levels were influenced by land 
use type. Soil organic carbon concentrations were 
higher in dense shrubs than the thinner 
categories. Organic carbon concentrations ranged 
from 0.624%–1.385% at site 1 and from 0.1%-
0.254% at site 2, with the highest concentrations 
found in deep vegetation and the lowest on 
thinner land (Table 1). 
Previous studies have shown litter carbon stores 
of 7.2 for coniferous forests and 4.8 for deciduous 
forests at the national scale [42]. As well as litter 
carbon stocks, those for coniferous species are 
generally greater than those for deciduous species 
[43]. Furthermore, the literature reveals that the 
composition and breakdown rates of different 
species have an impact on litter carbon supply 
[44,45] 
The patterns of maximum forest biomass increase 
are influenced by the species composition of the 
trees [46]. Mixed tree species increase biomass 
accumulation and SOC storage in the forest [47]. 
Vijayakumar, et al., found that annual SOC 
accumulation increased with age and was related 
to vegetation type (deciduous or coniferous) and 
soil texture (clay or loam). In both clay and loamy 
soils, trees have a greater capacity to retain 
carbon than coniferous trees [48]. The carbon 
pool is determined by tree biomass, which 
accumulates with the variety and growth of tree 
species [49]. The carbon that is stored in the 
biomass of the shoots and over the roots is 
referred to as "biomass." Iranmanesh and Sadeghi 
looked at how much carbon is stored in Tamarix 
aphylla and found that the leaves and stems hold 
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the majority of the plant's total carbon. Kurgat et 
al. found that in the rangelands of northern Kenya, 
vegetation cover explained 89 percent of the 
variability in soil organic carbon [50]. In the 
Qinghai-Tibetan Plateau, Liu, et al. found a 
significant correlation between above ground 
biomass and soil organic carbon [51]. 
In the northwestern Himalaya and northern 
Ethiopia, Rajput, et al.; Solomon, et al. discovered 
that forest ecosystems had more biomass carbon 
than other land cover categories. The large 
differences in biomass carbon between land cover 
types could be explained by differences in the 
number of stems, density, and size of trees in each 
land cover type. This is consistent with Solomon, 
et al. finding that tree density and diameter 
influence biomass carbon in northern Ethiopia. 
Furthermore, overgrazing techniques and human 
intervention influenced the recovery and 
expansion of herbaceous plant species, as well as 
negatively smothered tree and shrub growth [52-
57] 
The major differences in carbon stock potential 
and CO2 eq between the two sites were due to the 
existence of a variety of soil textures, organic 
matter, parent materials, vegetation species and 
densities, heights of trees and shrubs, DBH and 
management activities. The study looked at how 
carbon stores in vegetation, litter, and soil varied 
over time and land cover types. Overall, a study of 
two selected sites in Shilabo district found that the 
main reason for the difference in the average 
carbon concentration observed in Tables 1 and 2 
was the high correlation between soil texture, 
biomass, and soil carbon content [58,59]. 
According to Biadgligne, et al., the biomass carbon 
estimations of dense forests were within the 
worldwide range, ranging from 124.27 to 73.55 
t/ha for semi-arid tropics. The results were 
likewise within the range of carbon stocks in 
tropical dry forests, which were between 50 and 
350 t/ha [60]. The biomass carbon stock in the 
current study was larger than that reported by 
Solomon, et al. in the managed forest of Tigray, 
northern Ethiopia, which was 58.11 mg/ha and 
349 t/ha in the Mount Zequalla monastery forest 
Girma, et al., 362 t/ha in Humbo forested areas 
Chinasho, et al., and 149 t/ha in Behertsige central 
closed park Tefera and Soromessa, et al. [61-64].  
However, Shilabo shrub land's average sum of 
AGC, BGC, LC, and SOC biomass carbon stocks was 
higher than the above studies findings, which 
were 507.36 t/ha, and the sequestered average 
sum of AGCO2 eq, BGCO2 eq, LCO2 eq and SCO2 eq 
was about 1570.89 t/ha at the sandy loam soil 

texture site; 297.24 t/ha of CO2 and 1208.53 t/ha 
of CO2 eq at the sandy soil texture site [65, 66]. 
The carbon that can be stored in forest soil can 
help reduce greenhouse gas emissions. In total, 
soil has around 4.5 times as much carbon as living 
organisms and about 3 times as much carbon as 
the atmosphere. As a result, even a small increase 
in soil carbon could contribute significantly to 
lowering atmospheric carbon [67, 68]. 

Conclusion 
Forests and shrubs can trap carbon dioxide and 
reduce its concentration in the atmosphere. The 
carbon stock potential of shrub land on sandy 
loam texture soil was estimated to be 507.36 t/ha, 
including the latter carbon in the total carbon 
pools of above-ground carbon pools and soil 
organic carbon. In the same manner, at a sandy 
soil texture site, 297.24 t/ha of pooled above 
ground, below ground, litter, and soil organic 
carbon were calculated. Sandy loam and sandy 
textured soil can both sequester about 2, 3971 
t/ha and 13, 20.53 t/ha, respectively. 
There was a statistically significant mean 
difference at p<0.05 between sandy loam texture 
soil (site 1) and sandy texture soil (site 2). This 
implies that sandy loam texture soil has a larger 
carbon pool and sequesters more carbon dioxide 
than sandy texture soil. There were dense and tall 
floristic bushes and shrubs at the site where sandy 
loam texture soil was found, and the soil carbon 
fraction was higher than at the site where sandy 
soil was found. The result of this discrepancy is 
determined by soil texture, soil carbon fraction, 
tree height, diameter at breast height, tree density, 
and other factors. In general, shrub lands stock 
large amounts of carbon, which removes CO2 from 
the atmosphere. As a result, they contribute to the 
mitigation of climate change by providing greater 
environmental and ecological services. 

Recommendation  
Our world’s temperature is alarmingly increasing 
over time due to agricultural expansion, 
deforestation, overgrazing, and urbanization. 
Forests, shrubs, and grasslands have the capacity 
to stock carbon pools and remove carbon dioxide 
from the atmosphere. In general, government and 
non-governmental organizations do not pay much 
attention to conserving and protecting shrub 
lands, but as this study revealed, shrubs have a 
greater contribution to creating convenient 
environments. Charcoal production is a common 
livelihood activity through shrub deforestation in 
the study area. Therefore, governmental and non-
governmental organizations should look for shrub 
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lands and give them attention to protect and 
conserve them. In order to save this shrub from 
extinction, all stakeholders need to provide a 
variety of livelihood options and assistance to the 
communities in the area. 
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