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INTRODUCTION

Ozone, one of the oxidized products, was produced by a complex 
chemical reaction between volatile organic compounds (VOCs) 
and nitrogen oxides (NOx) in the presence of sunlight. It is a 
major environmental concern because of its adverse impacts 
on human health [1] and on crops and forest ecosystems [2,3]. 
Most of average ozone level reaches its maximum in winter and 
its minimum during the rainy season. Human expose to ozone 
by ways of inhalation and contact between a person and from the 
pollutant in the microenvironments where they spend their time. 
Exposure to ozone has been linked to a number of respiratory 
health effects, including significant decreases in lung function, 

inflammation of airways, and caused several symptoms such as 
cough and pain when breathing deeply [4-7]. In Asia, ground-level 
ozone concentrations are alarmingly high in some large metropolitan 
areas, as demonstrated in many countries such as China, Japan, 
Korea, Taiwan and Thailand [8]. Many researchers have reported 
the rising ground-level ozone in the range of 0.5-2.0% per year over 
the mid-latitudes of the Northern Hemisphere and in some areas 
exceeding the standard level (of 100 part per billions [ppb]) [9]. The 
ground-level ozone was not associated with death, cardiovascular 
and respiratory diseases (Relative risk [RR]= 1.009, 95% confidence 
interval [CI]= 0.911, 1.117; RR = 1.239, 95% CI = 0.901, 
1.705; RR = 1.157, 95% CI = 0.791, 1.692) [10]. All of the relative 
risks were for 10 ppb increase in ground-level ozone concentration. 
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ABSTRACT
Aims: The study were evaluated for the presence of the ambient air volatile organic compounds (VOCs) 
(benzene, toluene, ethylbenzene and xylene [BTEX] and carbonyl compounds [CCs]) at the university, roadside 
and residential areas in order to assess the applicability for prediction of ozone formation in ambient air of these 
in urban area, Bangkok, Thailand. Materials and Methods: The ambient air VOCs levels were evaluated by the 
gas chromatography/flame ionization detector for BTEX analysis and the high-performance liquid chromatography/
UV-visible detector for CCs analysis. Results: The comparison of VOCs levels in those areas showed that the 
roadside area had the highest VOCs levels (of toluene and benzene levels), while the residential area had the 
lowest of benzene level. However, the benzene levels of all studied-areas were higher than ambient air quality 
standard. The contributions of hydrocarbons to local ozone formation potential were evaluated in terms of 
maximum incremental reactivity. Our results showed that the largest contributors to ozone production in Bangkok 
were toluene and formaldehyde (possibly from the emission of biofuel motor vehicle exhaustion). The roadside 
area also had the highest ozone formation potential. The aromatic hydrocarbon was the major contribution to 
anthropogenic emissions of VOCs. However, anthropogenic emissions and photochemistry are mainly transported 
VOCs to ozone formation. Conclusion: There was the highest VOCs level at roadside area and also was the 
largest amount of ozone level from chemical reactions. Therefore, it is a need for more research and the 
environmental protection policy because it may have serious health risk from these pollutants in these areas.
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However, in Bangkok, Ruangdej and Chaosuansreecharoen [10] 
found that ground-level ozone was marginally associated with death 
from unclassified causes (RR = 1.234, 95% CI = 0.998, 1.525).

Air quality in urban areas is affected mainly by photochemical 
oxidants [11] and ozone concentrations showed a relatively 
correlation with traffic densities [12]. Motor vehicle exhaustion, 
industrial emissions, and chemical solvents are the major 
anthropogenic sources of these chemicals [13,14]. Vehicle 
emissions constitute the major source of ozone precursors in 
Bangkok [15]. For the meteorological parameters in metropolitan 
areas such as in Bangkok, the monsoonal rain and wind play 
significant effects on the characteristics of ground-level ozone 
[16]. The VOCs in the atmosphere are regularly oxidizing to 
ozone by reaction with hydroxyl radicles in the presence of NOx 
in present of sunlight [5,17]. Maximum incremental reactivity 
(MIR) was the most commonly used to developed the express 
the ozone formation potential from VOCs [18].

Thus, this study evaluated ambient air VOCs of benzene, toluene, 
ethylbenzene and xylene (BTEX) and carbonyl compounds (CCs) 
in the university, roadside and residential areas and assessed the 
applicability for prediction of ozone formation in ambient air of 
these in an urban area, Bangkok, Thailand.

MATERIALS AND METHODS

Study Sites

Pathumwan district of central Bangkok was chosen as the study 
areas: Roadside, university and residential areas. The roadside areas 
were on the Rama I, Phaya Thai and Henry Dunant roads, which 
with high traffic congestion during the day. The Chulalongkorn 
University was selected as the university area. It located on those 
roadside areas and surrounded by several department stores (Ma 
Boon Klong Center, Siam Paragon and Siam Discovery Stores, 
and Siam Square shopping center). The residential areas were 
the five low-income communities (of Wat Pathumwanaram, 
Bonkaipattana, Soi Prajane, Salakhin, and Chaochoocheep) which 
located around the roadside and university areas [Figure 1].

Ambient Air Sample Collections and Analyses

A total of 31 ambient air samples were collected (6 from the 
university; 10 from roadside and 15 from residential areas) from 16 
different sites in Pathumwan district, from February to June 2013. 
The active sampling method was chosen to collect the ambient 
air sample by using of a 2,4-dinitrophenylhydrazine cartridge 
(for CCs) and activated charcoal tube (for BTEX) connected to 
a low flow rate air pump (1.0 mL/min). The device was set up 
for 8 h (8.00 am-16.00 pm). Both cartridge and charcoal tube were 
kept at 4°C and stored in the refrigerator. The BTEX analysis was 
done by the gas chromatography/flame ionization detector procedure 
as described by Tunsaringkarn et al. [19]. The CCs analysis was done 
by the high-performance liquid chromatography/UV-visible detector 
according to the Method TO-11A [20]. The methodology analyses 
were validated through determination of the limits of detection, 
linearity, precision and accuracy. The calibrations were conducted 

using standard solutions of five concentrations with the coefficients 
of determination (R2) above 0.999. The percentages of relative 
standard deviations (% RSD) were < 0.178. Each sample analysis 
was done by triplicate.

The permission to conduct this study was approved by the 
Ethical Review Committee for Research Involving Human 
Research Subjects, Health Science Group, Chulalongkorn 
University with COA No. 089/2012.

Statistical Analysis

All analytical measurements were performed in duplication 
to give value with a standard error. All analyses were 
carried out with Statistics Package for the Social Sciences 
Version 17 (Chulalongkorn University License [IBM Microsoft, 
New York, USA]). Descriptive statistical analysis was 
evaluated on concentrations of ambient air concentrations. 
The mean difference levels between areas were evaluated by 
one-way ANOVA (lithium dodecyl sulfate -post-hoc multiple 
comparisons). A statistically significant difference was accepted 
at P < 0.05 as other medical studies. The ozone formation 
potentials were calculated by the following equation [18,21]:

Ozone (O3)= VOCs (μg/m3)× MIR (gO3/gVOCs)

RESULTS

Occurrence and Distribution of Ambient Air VOCs

Our results of the ambient VOCs concentrations of university, 
roadside and residential areas in central Bangkok area were 

Figure 1: Study Sites Map O = University areas: 1 = Satit Chulalongkorn 
Demonstration school, 2 = Entrance-exit Gate 1, 3 = Entrance-
exit Gate 2, 4 = Entrance-exit Gate 3, 5 = Entrance-exit Gate 4, 
6 = Checkpoint- Faculty of Science, • = Roadside areas: 1 = Community 
Pharmacy Clerkship, 2 = Bangkok Bank  Public Company Limited, 
3 = Krung Thai Bank Public Company Limited, 4 = Faculty of Science, 
5 = Siam Commercial Bank Public Company Limited, = Residential 
areas: 1 = Wat Pathumwanaram community, 2 = Bonkaipattana 
community, 3 = Soi Prajane community, 4 = Salakhin community, 
5 = Chaochoocheep community
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89.07, 200.16 and 84.67 μg/m3 respectively [Table 1], with 
the average of 124.25 μg/m3. The highest of the average total 
VOCs level (200.16 μg/m3) was recorded at the roadside areas. 
However, they were not significant differences, when compared 
to the other areas. Most average ambient VOCs concentrations 
were benzene, toluene, ethyl benzene, m,p-xylene, o-xylene, 
formaldehyde and acetaldehyde at 18.59, 77.41, 4.33, 4.13, 3.16, 
8.57 and 4.27 μg/m3 respectively.

VOCs (toluene:benzene [T/B]; xylene:benzene [X/B]; 
xylene:ethyl benzene [X/EB]; formaldehyde acetaldehyde 
[F/A]; acetaldehyde:propionaldehyde [A/P]) ratios

Of the total 5 VOCs ratios (T/B, X/B, X/EB, F/A and A/P) 
measured in this study, the residential areas possessed 3 highest 
ratios of the T/B (18.11), X/B (2.91)and X/EB (2.88), while the 
university areas had one of F/A (2.43)ratio and the roadside 
had one of A/P (6.86) ratio [Table 2]. The average T/B ratios of 
university, roadside and residential areas were 1.29, 5.35, and 18.11 
respectively with the average ratio of 4.19. The residential areas 
were also found to have the highest X/B (2.91) and X/EB (2.88) 
ratios among the 3-studied areas, while the average ratios of both 
ratios were 0.39 and 1.68. The F/A ratios of university, roadside 
and residential areas were 2.43, 1.92, and 1.59 respectively with 
the average ratio of 2.00. While the A/P ratios were 4.46, 6.86, 
and 5.50 respectively with the average ratio of 5.77.

Ozone Formation Potential

The total ozone formation potentials in the university, roadside and 
residential areas were 365.06, 932.70, and 436.36 μg/m3, respectively 
[Table 3]. Most of ozone formation of the university, roadside and 
residential areas came from toluene, formaldehyde, acetaldehyde, 
m,p-xylene, o-xylene, benzene and ethyl benzene at 371.57, 81.04, 
27.90, 32.24, 24.12, 13.39, and 13.16 μg/m3 respectively.

DISCUSSION

Motor vehicles emit millions of pounds of hazardous pollutants 
into the air each year in the United State, including VOCs [22]. 
The petroleum constituents of primary interest to human health 
have been the aromatic hydrocarbons (i.e. benzene, toluene, ethyl 
benzene, and xylenes-BTEX) poly-nuclear aromatic hydrocarbons 
and gasoline additives. Fuel combustion also emits carbon 
monoxide, benzene, acetaldehyde, formaldehyde, and diesel 
particulates. Benzene, formaldehyde, and diesel particulates are 
the major components of vehicle exhaust that drive the estimated 
inhalation risks in urban areas [23]. The most abundance of VOCs 
in ambient air were toluene and benzene, which were the same 
results as reported by Barletta et al. [24] and Tiwari et al. [25]. 
Among the BTEX, the toluene was the most abundance levels 
of all areas, however, the highest toluene levels were recorded 
from the roadside areas. The toluene level at residential area was 
lower than the roadside area because it is restricted the area for all 
motor vehicles. Therefore, the toluene emission from motorcycles 
was less than those of the other areas [26,27]. Ho and Lee [28] 
and Kourtidis et al. [29] reported that the amounts of benzene, 
toluene, ethylbenzene, emitted from motor vehicles, were high in 
traffic areas. While, Bravo et al. [30] studied in Mexico City and 
found that benzene and m,p-xylene at the roadside and university 
areas were significant higher than the residential areas. Most of 
the residential areas were nearly main roads of Rama I, Rama IV, 
Phyathai, Charu Muang and expressway of Sirat (Toll road) and 
Chaloem Maha Nakhon with a high number of motor vehicles a 
day [31]. However, Han and Naeher [32] explained this situation 
that the traffic VOCs decreases drastically as the distance from the 
main traffic roads. However, ambient air benzene levels in all areas 
were higher than ambient air quality standards (1.17 μg/m3) [33]
and higher than the previous study at the roadside of Bangkok in 
2007 by Laowagul et al. [34]. For the examination of the CCs, the 
ambient air formaldehyde and acetaldehyde levels were the most 
abundance and with the highest levels recorded in the roadside 

Table 1: Ambient VOCs concentration (μg/m3) at 21 locations in Pathumwan area
VOCs Mean±SE

University area (n=6) Roadside area (n=10) Residential area (n=15) Average

Benzene 26.90±3.51** 25.50±3.58## 3.37±3.23**,## 18.59±2.79
Toluene 34.74±13.33 136.45±65.56 61.04±12.21 77.41±32.15
Ethylbenzene 5.47±3.13 4.11±0.87 3.41±1.00 4.33±0.97
M, p-Xylene 2.75±1.39** 2.98±0.76### 6.67±2.96**,### 4.13±1.18
O-Xylene 2.53±1.13 3.80±0.80 3.14±1.25 3.16±0.60
Formaldehyde 8.45±1.53 14.11±3.25# 3.14±2.19# 8.57±1.77
Acetaldehyde 3.48±0.51 7.34±1.79 1.98±1.65 4.27±0.95
Propionaldehyde 0.78±0.22 1.07±0.25 0.36±0.30 0.74±0.14
Crotonaldehyde 0.29±0.22* 0.00±0.00*,## 0.48±0.50## 0.26±0.11
Butyraldehyde 0.34±0.18 0.42±0.40 0.31±0.48 0.36±0.20
Benzaldehyde 0.12±0.11 0.93±0.43 0.31±0.08 0.45±0.22
Isovaleraldehyde 0.00±0.00 0.01±0.00 0.06±0.22 0.02±0.02
Valeraldehyde 0.84±0.38 0.75±0.36 0.09±0.12 0.56±0.21
o-Tolualdehyde 0.12±0.12 0.45±0.38 0.06±0.08 0.21±0.18
m, p-Tolualdehyde 0.08±0.08 0.93±0.63 0.09±0.29 0.37±0.31
Hexaldehyde 1.16±0.56 0.61±0.33 0.64±0.39 0.80±0.23
2,5Dimethyl benzaldehyde 1.02±0.17 1.31±1.31 6.56±0.38 0.83±0.62
Total 89.07±9.98 200.16±32.78 84.67±14.56 124.25±18.64

*,#Significant different between different areas at P<0.05, **,##Significant different between different areas at P<0.01, ###Significant different 
between different areas at P<0.001, VOCs: Volatile organic compounds, SE: Standard error
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areas. These pollutants were mainly from combustion emission 
from biofuel which was rapidly increasing in Bangkok [35-37].

The T/B ratio of the residential area was much higher than the 
average of 4.19. The T/B ratio is a tool for characterizing the 
distance from vehicle emission sources [38]. The residential 
area recorded the lowest benzene level and about averaged-
toluene level. The X/B ratio is used to indicate the possibility 
of air mass transported, while the X/EB ratio is used to identify 
the degree of evolution of photo-oxidation reaction. The X/B 
and X/EB ratios were high in the residential area indicated that 
there were low amount of air mass from the motor vehicles 
(transportation) and photo-oxidation from the nearby main 
roads and highways [39]. While both ratios were lower in the 
university and roadside areas, these indicated that there was 
higher air mass transportation with higher photochemical 
activity to ozone formation at roadside area. The small X/B 
and X/EB ratio revealed that the photo-chemical reaction were 
active [25].

Formaldehyde and acetaldehyde are emitted by vehicles that 
use the oxygenated fuels such as methanol and ethanol [40]. 
The high F/A ratio in the university area referred to low-used 
of ethanol as automotive fuel which supported data from 
Brazil where high levels of acetaldehyde in urban air reflect 
the nationwide use of ethanol fuel [41]. The residential areas 

were normally polluted from the vehicle’s emission from 
the main roads and express highways. The average F/A ratio 
appeared in this study was in ranged of the average F/A reported 
in other studies [42-44]. The A/P ratio is generally used to 
indicate the anthropogenic origin of ambient carbonyls, since 
the propionaldehyde is believed to be associated only with 
anthropogenic emissions [45]. This ratio is typically found 
to be high in a rural area, but low in the urban area [46]. The 
A/P ratios in our study were high in the roadside areas which 
demonstrated that the lifetime of acetaldehyde exceeds that 
of propionaldehyde with respect to photolysis reactions [17]. 
The large photochemical production of acetaldehyde at high 
temperatures and strong solar radiation may be counterbalanced 
rapid loss by photolysis [47,48]. Our result was similar to the 
study in Rome by Possanzini et al. [43] but a decreasing trend 
in VOC levels was observed in Rome urban air during 2011 
suggesting the effectiveness of European directives on air 
quality [49].

The ozone formation potential is calculated by the multiplication 
of the VOCs concentrations by the MIR coefficient [18,21]. 
The total concentrations of VOCs in the university, roadside 
and residential areas were 88.05, 199.46, and 85.15 μg/m3, 
respectively. While, the total ozone formation potentials in 
the university, roadside and residential areas were 365.06, 
932.70 and 436.36 μg/m3, respectively. Our results indicated 
that the ozone levels of all 3 studied-areas were higher than 
air quality standard limited (100 μg/m3) [50]. Among the 
3 studied-areas, the roadside areas exhibited the highest 
ozone concentration (199.46 μg/m3) and the ozone formation 
potential (932.70 μg/m3) which the most chemical reactions 
transformed toluene and formaldehyde. The presence of 
toluene and formaldehyde are normally the main pollutants to 
ozone formation. Results of the measurements of toluene and 
formaldehyde levels in the roadside area in this study were the 
highest (136.45 and 14.11 μg/m3) among the 3 other studied-
areas. Thus, the toluene and formaldehyde may contribute to 
the overall risk associated with population exposure to toxic 

Table 3: Ozone formation potential with respect to MIR coefficient in 3 studied areas
VOCs MIR 

coefficienta
Concentration (μg/m3) O3 formation potentialb (μg/m3)

University area Roadside area Resident area University area Roadside area Resident area

Benzene 0.72 26.9 25.5 3.37 19.37 18.36 2.43
Toluene 4.80 34.74 136.45 61.04 166.75 654.96 292.99
Ethylbenzene 3.04 5.47 4.11 3.41 16.63 12.49 10.37
M, p-Xylene 7.80 2.75 2.98 6.67 21.45 23.24 52.03
O-Xylene 7.64 2.53 3.8 3.14 19.33 29.03 23.99
Formaldehyde 9.46 8.45 14.11 3.14 79.93 133.48 29.70
Acetaldehyde 6.54 3.48 7.34 1.98 22.76 48.00 12.95
Propionaldehyde 7.08 0.78 1.07 0.36 5.52 7.58 2.55
Crotonaldehyde 9.39 0.29 0 0.48 2.72 0.00 4.51
Butyraldehyde 5.97 0.34 0.42 0.31 2.03 2.51 1.85
Benzaldehyde −0.67 0.12 0.93 0.31 −0.08 −0.62 −0.21
Isovaleraldehyde 4.97 0.00 0.01 0.06 0.00 0.05 0.30
Valeraldehyde 5.08 0.84 0.75 0.09 4.26 3.81 0.46
o-Tolualdehyde −5.09 0.12 0.45 0.06 −0.61 −2.29 −0.31
m, pTolualdehyde −0.59 0.08 0.93 0.09 −0.05 −0.55 −0.05
Hexaldehyde 4.35 1.16 0.61 0.64 5.05 2.65 2.78
Total formation - 88.05±10.25 199.46±33.74 85.15±14.98 365.06±10.25 932.70±162.62 436.34±72.31

aFanizza et al.[21] and Carter [18], bOzone (O3)=VOCs (μg/m3)×MIR (gO3/gVOCs). VOCs: Volatile organic compounds, MIR: Maximum incremental 
reactivity

Table 2: Comparison of VOCs ratios in different areas
Area VOCs ratio

T/B X/B X/EB F/A A/P

University area 1.29 0.20 0.96 2.43 4.46
Roadside area 5.35 0.27 1.65 1.92 6.86
Residential area 18.11 2.91 2.88 1.59 5.50
Average 4.19 0.39 1.68 2.00 5.77

VOCs: Volatile organic compounds, T/B: Toluene: benzene, X/B: Xylene: 
benzene, X/EB: Xylene: ethyl benzene, F/A: Formaldehyde: acetaldehyde, 
A/P: Acetaldehyde: propionaldehyde
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air pollutants. Therefore, it applied to the conditions in which 
outdoor airs in the roadside areas have large amounts of exhaust 
vehicle emission and photo-oxidation in atmospheric especially 
in daytime [51,52]. However, there are many other factors 
influenced the amounts of pollutants from the tailpipe emission 
as well as made the spatial variation even greater, such as fuel 
chemistry, traffic density, driving conditions, meteorological 
conditions (temperature, wind, etc.) and city buildings [53-56].

Ambient ozone trends are influenced by year-to-year changes 
in meteorological conditions, population growth, VOCs ratio, 
the ratio of the concentration of nitric oxide (NO) and nitrogen 
dioxide (NO2)-NOx ratio, and by changes in emissions from 
ongoing control measures [57]. Emissions of the NOx and 
VOCs may increase by 95% and 65%, respectively, mainly 
driven by the expected increasing in road traffic volume. On 
the other hand, ammonia, mainly emitted from agriculture, is 
projected to double by 2030 in East Asia [58]. From our results, 
all the ratio ozone formation potentials of 3 studied-areas 
(university:roadside:resident = 1:2.6:1.2 [365.06:932.70:436.34]) 
had potential to produce ozone over the air-standard limitation. 
These lead to the high potential in which people have to expose 
to the high amount of ozone. The increasing volume of ozone 
might be directly affected the health conditions. Since, ozone 
can induce respiratory symptoms (chest tightness, wheezing, or 
shortness of breath) including coughing, throat irritation, pain, 
burning, or discomfort in the chest when taking a deep breath, 
lung function decrements and airways inflammation [59]. 
Higher daily ozone concentrations are associated with increased 
asthma attacks, increased hospital admissions, increased daily 
mortality, and other markers of morbidity. The consistency and 
coherence of the evidence for effects upon asthmatics suggests 
that the ozone can make asthma symptoms worse and can 
increase sensitivity to asthma triggers.

CONCLUSIONS

In the most dense-population areas in Bangkok, like our 3 
studied-areas, people who work or live very close to the main 
roadsides and highways must have risk of serious health effects 
from air pollutants, especially from the carcinogenic pollutant 
liked benzene. This study demonstrated the usefulness of 
ambient air VOCs levels screening and ozone formation 
potential in difference urban studied-areas. We need to do more 
extensive researches and begin to exercise the environmental 
protection policy.
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